Riverbed Cryptographic Security Module version 1.0 ## FIPS 140-2 Level 1 Non-Proprietary Security Policy November 7, 2016 ## **Table of Contents** | 1 Introduction | 4 | |--|----| | 2 Tested Configurations | 6 | | 3 Ports and Interfaces | 8 | | 4 Modes of Operation and Cryptographic Functionality | 9 | | 4.1 Critical Security Parameters and Public Keys | 12 | | 5 Roles, Authentication and Services | 15 | | 6 Self-test | 17 | | 7 Operational Environment | 19 | | 8 Mitigation of other attacks | 20 | ## **Modification History** | 2016-11-07 | Correction of OS name for platforms 37,38,43,44 | |------------|--| | 2016-10-25 | Addition of twenty platforms | | 2015-11-20 | Deprecation of X9.31 RNG and Dual EC DRBG | | 2014-08-22 | Addition of nine platforms | | 2014-03-18 | Addition of five platforms | | 2014-02-20 | Multiple changes to separate the Approved services from those that are | | | non-Approved per the SP 800-131A transition | | 2014-01-06 | Note Dual EC DRBG is non-approved in Section 4 | | 2013-11-25 | Changes to Sections 4, 5, 6 | | 2013-08-23 | Added four new platforms | | 2013-04-10 | Initial draft | Copyright © 2016 Riverbed Technology, Inc. This document may be reproduced and distributed whole and intact including this copyright notice. Riverbed and any Riverbed product or service name or logo used herein are trademarks of Riverbed Technology. All other trademarks used herein belong to their respective owners. The trademarks and logos displayed herein may not be used without the prior written consent of Riverbed Technology or their respective owners. #### 1 Introduction This document comprises the non-proprietary FIPS 140-2 Security Policy for the Riverbed Cryptographic Security Module v1.0, hereafter referred to as the Module. The Module is a software library providing a C-language application program interface (API) for use by other processes that require cryptographic functionality. The Module is classified by FIPS 140-2 as a software module, multi-chip standalone module embodiment. The physical cryptographic boundary is the general purpose computer on which the module is installed. The logical cryptographic boundary of the Module is the fipscanister object module, a single object module file named *fipscanister.o*. The Module performs no communications other than with the calling application (the process that invokes the Module services). The FIPS 140-2 security levels for the Module are as follows: | Security Requirement | Security Level | |---|----------------| | Cryptographic Module Specification | 1 | | Cryptographic Module Ports and Interfaces | 1 | | Roles, Services, and Authentication | 1 | | Finite State Model | 1 | | Physical Security | NA | | Operational Environment | 1 | | Cryptographic Key Management | 1 | | EMI/EMC | 1 | | Self-Tests | 1 | | Design Assurance | 1 | | Mitigation of Other Attacks | NA | Table 1 – Security Level of Security Requirements The Module's software version for this validation is v1.0. Block Diagram ## **2** Tested Configurations | | On any time I Empirement Processor On timing time | | | | | |----|---|----------------------|---------------------------|--|--| | | Operational Environment | Processor | Optimizations
(Target) | | | | 1 | RiOS 8.0 on Steelhead Appliance 32-bit | Intel Xeon (x86_64) | None | | | | 2 | RiOS 8.0 on Steelhead Appliance 64-bit | Intel Xeon (x86_64) | None | | | | 3 | RiOS 8.0 64-bit under VMware ESXi 5.1 | Intel Xeon E3-1220v2 | None | | | | | | (x86_64) | | | | | 4 | RiOS 8.0 64-bit under VMware ESXi 5.1 | Intel Xeon E3-1220v2 | AES-NI | | | | | | (X86_64) | | | | | 5 | Stingray OS version 4.0 64-bit under | Intel Xeon E3-1220v2 | None | | | | | VMware ESXi 5.1 | (x86_64) | | | | | 6 | Stingray OS version 4.0 64-bit under | Intel Xeon E3-1220v2 | AES-NI | | | | | VMware ESXi 5.1 | (x86_64) | | | | | 7 | RiOS 8.0 on Steelhead Appliance 64-bit | Intel Xeon E31220 | AES-NI | | | | | | (x86_64) | | | | | 8 | Granite OS 2.0 on Riverbed GCA-02000 | AMD Opteron 4122 | None | | | | | | (x86_64) | | | | | 9 | Granite OS 2.0 under VMware ESXi 5.1 | Intel Xeon E31220 | None | | | | | | (x86_64) | | | | | 10 | Granite OS 2.0 under VMware ESXi 5.1 | Intel Xeon E31220 | AES-NI | | | | | | (x86_64) | | | | | 11 | Whitewater OS 3.0 | Intel Xeon E5620 | None | | | | | | (x86_64) | | | | | 12 | Whitewater OS 3.0 | Intel Xeon E5620 | AES-NI | | | | | | (x86_64) | | | | | 13 | Whitewater OS 3.0 under VMware ESXi 5.1 | Intel Xeon E31220 | None | | | | | | (x86_64) | | | | | 14 | Whitewater OS 3.0 under VMware ESXi 5.1 | Intel Xeon E31220 | AES-NI | | | | | | (x86_64) | | | | | 15 | Interceptor OS 4.5 | AMD Opteron 2376 | None | | | | | | (x86_64) | | | | | 16 | RiOS 8.6 32-bit | Intel Xeon E31220 | None | | | | | | (x86_64) | | | | | 17 | RiOS 8.6 64-bit | Intel Xeon | None | | | | | | E31220(x86_64) | | | | | 18 | RiOS 8.6 64-bit under VMware ESXi 5.1 | Intel Xeon E5-2430L | None | | | | | | (x86_64) | | | | | 19 | RiOS 8.6 64-bit under VMware ESXi 5.1 | Intel Xeon E5-2430L | AES-NI | | | | | | (X86_64) | | | | | 20 | RiOS 8.6 64-bit | Intel Xeon | AES-NI | |----|---|---------------------|--------------| | | | E31220(x86_64) | | | 21 | Steelhead Mobile Controller 4.6 | Intel Xeon (x86_64) | None | | 22 | Steelhead Mobile Controller 4.6 | Intel Xeon (x86_64) | AES-NI | | 23 | 23 Steelhead Mobile Controller 4.6 under Intel Xeon E5-2430L None | | None | | | VMware ESXi 5.1 | (x86_64) | | | 24 | Steelhead Mobile Controller 4.6 under | Intel Xeon E5-2430L | AES-NI | | | VMware ESXi 5.1 | (x86_64) | | | 25 | RiOS 9.2 x86 64-bit | Intel Xeon E3 (x86) | AES-NI | | 26 | RiOS 9.2 x86 64-bit | Intel Xeon E3 (x86) | None | | 27 | RiOS 9.2 x86 under VMware ESXi 5.5 | Intel Xeon E5 (x86) | AES-NI | | 28 | RiOS 9.2 x86 under VMware ESXi 5.5 | Intel Xeon E5 (x86) | None | | 29 | RiOS 9.2 x86 64bit under KVM 1.0 | Intel Xeon E5 (x86) | AES-NI | | 30 | RiOS 9.2 x86 64bit under KVM 1.0 | Intel Xeon E5 (x86) | None | | 31 | SteelCentral Controller for SteelHead Mobile | Intel Xeon E5 (x86) | AES-NI | | | 5.0 under VMware ESXi 5.5 | | | | 32 | SteelCentral Controller for SteelHead Mobile | Intel Xeon E5 (x86) | None | | | 5.0 under VMware ESXi 5.5 | | | | 33 | SteelFusion 4.3 under VMware ESXi 5.5 | Intel Xeon E5 (x86) | AES-NI | | 34 | SteelFusion 4.3 under VMware ESXi 5.5 | Intel Xeon E5 (x86) | None | | 35 | Riverbed License Manager 1.0 under | Intel Xeon E5 (x86) | AES-NI | | | VMware ESXi 5.5 | | | | 36 | Riverbed License Manager 1.0 under | Intel Xeon E5 (x86) | None | | | VMware ESXi 5.5 | | | | 37 | Riverbed SteelCentral AppResponse 11.2 64- | Intel Xeon E5 (x86) | AES-NI | | | bit under VMware ESXi 5.5 | | | | 38 | Riverbed SteelCentral AppResponse 11.2 64- | Intel Xeon E5 (x86) | None | | | bit under VMware ESXi 5.5 | | | | 39 | SteelCentral Controller for SteelHead Mobile | Intel Xeon (x86) | AES-NI | | | 5.0 | | | | 40 | SteelCentral Controller for SteelHead Mobile | Intel Xeon (x86) | None | | | 5.0 | | | | 41 | SteelFusion 4.3 | AMD Opteron 4100 | AES | | | | Series (x86) | encryption | | | | | acceleration | | 42 | SteelFusion 4.3 | AMD Opteron 4100 | None | | | | Series (x86) | | | 43 | Riverbed SteelCentral AppResponse 11.2 | Intel Xeon E5 (x86) | AES-NI | | 44 | Riverbed SteelCentral AppResponse 11.2 | Intel Xeon E5 (x86) | None | Table 2 - Supported Platforms ### **3** Ports and Interfaces The physical ports of the Module are the same as the computer system on which it is executing. The logical interface is a C-language application program interface (API). | Logical interface type | Description | |------------------------|---| | Control input | API entry point and corresponding stack parameters | | Data input | API entry point data input stack parameters | | Status output | API entry point return values and status stack parameters | | Data output | API entry point data output stack parameters | Table 3 - Logical interfaces As a software module, control of the physical ports is outside module scope. However, when the module is performing self-tests, or is in an error state, all output on the logical data output interface is inhibited. The module is single-threaded and in error scenarios returns only an error value (no data output is returned). ## 4 Modes of Operation and Cryptographic Functionality The Module supports only a FIPS 140-2 Approved mode. Tables 4a and 4b list the Approved and Non-approved but Allowed algorithms, respectively. | Function | Algorithm | Options | Cert
| |-----------------------|-------------------------------|---|-----------| | Random Number | | Hash DRBG | | | Generation; | [SP 800-90] DRBG ¹ | HMAC DRBG, no reseed | 310 | | Symmetric key | Prediction resistance | CTR DRBG (AES), no derivation function | | | generation | supported for all variations | | | | | [SP 800-67] | 3-Key Triple-DES TECB, TCBC, TCFB, | 1485 | | | | TOFB; CMAC generate and verify | | | Encryption, | [FIPS 197] AES | 128/192/256 ECB, CBC, OFB, CFB 1, CFB 8, | 2374 | | Decryption and | [SP 800-38B] CMAC | CFB 128, CTR, XTS; CCM; GCM; CMAC | | | CMAC | [SP 800-38C] CMAC | generate and verify | | | | [SP 800-38D] GCM | | | | | [SP 800-38E] XTS | | | | Message Digests | [FIPS 180-3] | SHA-1, SHA-2 (224, 256, 384, 512) | 2046 | | Keyed Hash | [FIPS 198] HMAC | SHA-1, SHA-2 (224, 256, 384, 512) | 1476 | | Digital Signature and | [FIPS 186-2] RSA | SigVer9.31, SigVerPKCS1.5, SigVerPSS | 1229 | | Asymmetric Key | | (1024/1536/2048/3072/4096 with all SHA sizes) | | | Generation | | GenKey9.31, SigGen9.31, SigGenPKCS1.5, | | | | | SigGenPSS (2048/3072/4096 with all SHA-2 | | | | | sizes) | | | | [FIPS 186-2] DSA | PQG Ver, Sig Ver (1024 with SHA-1 only) | 745 | | | [FIPS 186-3] DSA | PQG Ver, Sig Ver (1024/2048/3072 with all | 745 | | | | SHA sizes) | | | | | PQG Gen, Key Pair Gen, Sig Gen (2048/3072 | | | | | with all SHA-2 sizes) | | | | [FIPS 186-2] ECDSA | PKG: CURVES(P-224 P-384 P-521 K-233 K- | 392 | | | | 283 K-409 K-571 B-233 B-283 B-409 B-571) | | | | | PKV: CURVES(P-192 P-224 P-256 P-384 P- | | | | | 521 K-163 K-233 K-283 K-409 K-571 B-163 B- | | | | | 233 B-283 B-409 B-571) | | ¹ For all DRBGs the "supported security strengths" is just the highest supported security strength per [SP800-90] and [SP800-57]. | 224 K-256 K-384 K-521 B-224 B-256 B-384 B- 521 ExtraRandomBits TestingCandidates) PKV: CURVES(ALL-P ALL-K ALL-B) SigGen: CURVES(P-224: (SHA-224, 256, 384, 512) P-384: (SHA-224, 256, 384, 512) P-256: (SHA-224, 256, 384, 512) P-384: (SHA-224, 256, 384, 512) P-521: (SHA-224, 256, 384, 512) K-233: (SHA-224, 256, 384, 512) K-260: (SHA-224, 256, 384, 512) K-283: (SHA-224, 256, 384, 512) K-283: (SHA-224, 256, 384, 512) B-283: (SHA-224, 256, 384, 512) B-571: (SHA-224, 256, 384, 512)) SigVer: CURVES(P-192: (SHA-1, 224, 256, 384, 512) P-256: (SHA-1, 224, 256, 384, 512) P-256: (SHA-1, 224, 256, 384, 512) P-384: (SHA-1, 224, 256, 384, 512) P-256: (SHA-1, 224, 256, 384, 512) P-521: (SHA-1, 224, 256, 384, 512) K-233: (SHA-1, 224, 256, 384, 512) K-233: (SHA-1, 224, 256, 384, 512) K-283: (SHA-1, 224, 256, 384, 512) K-283: (SHA-1, 224, 256, 384, 512) K-283: (SHA-1, 224, 256, 384, 512) B-233: (SHA-1 | | [FIPS 186-4] ECDSA | PKG: CURVES(P-224 P-256 P-384 P-521 K- | 392 | |--|----------------|-------------------------|---|-----| | PKV: CURVES(ALL-P ALL-K ALL-B) SigGen: CURVES(P-224: (SHA-224, 256, 384, 512) P-256: (SHA-224, 256, 384, 512) P-384: (SHA-224, 256, 384, 512) P-384: (SHA-224, 256, 384, 512) P-521: (SHA-224, 256, 384, 512) K-283: (SHA-224, 256, 384, 512) K-409: (SHA-224, 256, 384, 512) B-283: (SHA-224, 256, 384, 512) B-283: (SHA-224, 256, 384, 512) B-283: (SHA-224, 256, 384, 512) B-883: (SHA-224, 256, 384, 512) B-571: (SHA-1, 224, 256, 384, 512) P-256: (SHA-1, 224, 256, 384, 512) P-256: (SHA-1, 224, 256, 384, 512) P-384: (SHA-1, 224, 256, 384, 512) P-521: (SHA-1, 224, 256, 384, 512) K-263: (SHA-1, 224, 256, 384, 512) K-263: (SHA-1, 224, 256, 384, 512) K-283: (SHA-1, 224, 256, 384, 512) K-283: (SHA-1, 224, 256, 384, 512) K-409: (SHA-1, 224, 256, 384, 512) B-233: (SHA-1, 224, 256, 384, 512) B-283: (S | | | 224 K-256 K-384 K-521 B-224 B-256 B-384 B- | | | SigGen: CURVES(P-224: (SHA-224, 256, 384, 512) P-384: (SHA-224, 256, 384, 512) P-526: (SHA-224, 256, 384, 512) P-521: (SHA-224, 256, 384, 512) R-233: (SHA-224, 256, 384, 512) K-233: (SHA-224, 256, 384, 512) K-571: (SHA-224, 256, 384, 512) B-283: (SHA-224, 256, 384, 512) B-571: (SHA-224, 256, 384, 512) D-256: (SHA-1, 224, 256, 384, 512) P-226: (SHA-1, 224, 256, 384, 512) P-256: (SHA-1, 224, 256, 384, 512) P-256: (SHA-1, 224, 256, 384, 512) P-384: (SHA-1, 224, 256, 384, 512) K-233: (SHA-1, 224, 256, 384, 512) K-233: (SHA-1, 224, 256, 384, 512) K-233: (SHA-1, 224, 256, 384, 512) K-266, 384, 512) B-233: (SHA-1, 224, 256, 384, 512) B-283: (SHA-1, 224, 256, 384, 512) B-233: (SHA-1, 224, 256, 384, 512) B-283: 25 | | | 521 ExtraRandomBits TestingCandidates) | | | 512) P-256: (SHA-224, 256, 384, 512) P-384: (SHA-224, 256, 384, 512) P-521: (SHA-224, 256, 384, 512) K-233: (SHA-224, 256, 384, 512) K-233: (SHA-224, 256, 384, 512) K-409: (SHA-224, 256, 384, 512) K-571: (SHA-224, 256, 384, 512) B-233: (SHA-224, 256, 384, 512) B-283: (SHA-224, 256, 384, 512) B-409: (SHA-224, 256, 384, 512) B-571: (SHA-224, 256, 384, 512) B-283: (SHA-224, 256, 384, 512) B-571: (SHA-224, 256, 384, 512) D-244, 256, 384, 512) D-256: (SHA-1, 224, 256, 384, 512) P-256: (SHA-1, 224, 256, 384, 512) P-256: (SHA-1, 224, 256, 384, 512) P-384: (SHA-1, 224, 256, 384, 512) F-521: (SHA-1, 224, 256, 384, 512) K-233: (SHA-1, 224, 256, 384, 512) K-233: (SHA-1, 224, 256, 384, 512) K-283: (SHA-1, 224, 256, 384, 512) K-283: (SHA-1, 224, 256, 384, 512) B-263: B-260: 384 | | | PKV: CURVES(ALL-P ALL-K ALL-B) | | | (SHA-224, 256, 384, 512) P-521: (SHA-224, 256, 384, 512) K-233: (SHA-224, 256, 384, 512) K-233: (SHA-224, 256, 384, 512) K-409: (SHA-224, 256, 384, 512) K-571: (SHA-224, 256, 384, 512) B-233: (SHA-224, 256, 384, 512) B-233: (SHA-224, 256, 384, 512) B-409: (SHA-224, 256, 384, 512) B-283: (SHA-224, 256, 384, 512) B-409: (SHA-224, 256, 384, 512) B-571: (SHA-224, 256, 384, 512) P-384: (SHA-1, 224, 256, 384, 512) P-256: (SHA-1, 224, 256, 384, 512) P-256: (SHA-1, 224, 256, 384, 512) P-384: (SHA-1, 224, 256, 384, 512) P-521: (SHA-1, 224, 256, 384, 512) K-233: (SHA-1, 224, 256, 384, 512) K-233: (SHA-1, 224, 256, 384, 512) K-233: (SHA-1, 224, 256, 384, 512) K-409: (SHA-1, 224, 256, 384, 512) B-233: (SHA-1, 224, 256, 384, 512) B-233: (SHA-1, 224, 256, 384, 512) B-233: (SHA-1, 224, 256, 384, 512) B-283: (SHA-1, 224, 256, 384, 512) B-283: (SHA-1, 224, 256, 384, 512) B-283: (SHA-1, 224, 256, 384, 512) B-409: (SHA-1, 224, 256, 384, 512) B-260: (SHA-1, 224, 256, 384, 512) B-260: (SHA-1, 224, 256, 384, 512) B-260: (SHA-1, 224, 256, 384, 512) B-271: | | | SigGen: CURVES(P-224: (SHA-224, 256, 384, | | | 256, 384, 512) K-233: (SHA-224, 256, 384, 512) K-409: (SHA-224, 256, 384, 512) K-571: (SHA-224, 256, 384, 512) B-233: (SHA-224, 256, 384, 512) B-283: (SHA-224, 256, 384, 512) B-409: (SHA-224, 256, 384, 512) B-283: (SHA-224, 256, 384, 512) B-283: (SHA-224, 256, 384, 512) B-571: (SHA-224, 256, 384, 512) B-283: (SHA-1, 224, 256, 384, 512) P-224: (SHA-1, 224, 256, 384, 512) P-256: (SHA-1, 224, 256, 384, 512) P-384: (SHA-1, 224, 256, 384, 512) P-521: (SHA-1, 224, 256, 384, 512) K-233: (SHA-1, 224, 256, 384, 512) B-233: (SHA-1, 224, 256, 384, 512) B-233: (SHA-1, 224, 256, 384, 512) B-233: (SHA-1, 224, 256, 384, 512) B-283: 384 | | | 512) P-256: (SHA-224, 256, 384, 512) P-384: | | | 512) K-283: (SHA-224, 256, 384, 512) K-409: (SHA-224, 256, 384, 512) K-571: (SHA-224, 256, 384, 512) B-233: (SHA-224, 256, 384, 512) B-283: (SHA-224, 256, 384, 512) B-409: (SHA-224, 256, 384, 512) B-571: (SHA-224, 256, 384, 512) B-571: (SHA-224, 256, 384, 512) P. Sig Ver: CURVES(P-192: (SHA-1, 224, 256, 384, 512) P. 256: (SHA-1, 224, 256, 384, 512) P-384: (SHA-1, 224, 256, 384, 512) P-256: (SHA-1, 224, 256, 384, 512) P-521: (SHA-1, 224, 256, 384, 512) K-233: (SHA-1, 224, 256, 384, 512) K-283: (SHA-1, 224, 256, 384, 512) K-283: (SHA-1, 224, 256, 384, 512) K-571: (SHA-1, 224, 256, 384, 512) B-233: (SHA-1, 224, 256, 384, 512) B-233: (SHA-1, 224, 256, 384, 512) B-283: (SHA-1, 224, 256, 384, 512) B-571: (SHA-1, 224, 256, 384, 512) D-571: (SHA-1, 224, 256, 384, 512) All NIST Recommended B, K and P curves ECC CDH (CVI) [SP 800-56A] (§5.7.1.2) All NIST Recommended B, K and P curves | | | (SHA-224, 256, 384, 512) P-521: (SHA-224, | | | (SHA-224, 256, 384, 512) K-571: (SHA-224, 256, 384, 512) B-283: (SHA-224, 256, 384, 512) B-283: (SHA-224, 256, 384, 512) B-409: (SHA-224, 256, 384, 512) B-571: (SHA-224, 256, 384, 512)) SigVer: CURVES(P-192: (SHA-1, 224, 256, 384, 512) P-256: (SHA-1, 224, 256, 384, 512) P-256: (SHA-1, 224, 256, 384, 512) P-384: (SHA-1, 224, 256, 384, 512) P-521: (SHA-1, 224, 256, 384, 512) K-233: (SHA-1, 224, 256, 384, 512) K-233: (SHA-1, 224, 256, 384, 512) K-283: (SHA-1, 224, 256, 384, 512) K-26, 384, 512) B-233: (SHA-1, 224, 256, 384, 512) B-26, 384, 512) B-271: (SHA-1, 224, 256, | | | 256, 384, 512) K-233: (SHA-224, 256, 384, | | | 256, 384, 512) B-233: (SHA-224, 256, 384, 512) B-283: (SHA-224, 256, 384, 512) B-409: (SHA-224, 256, 384, 512) B-571: (SHA-224, 256, 384, 512) P SigVer: CURVES(P-192: (SHA-1, 224, 256, 384, 512) P-224: (SHA-1, 224, 256, 384, 512) P-226: (SHA-1, 224, 256, 384, 512) P-384: (SHA-1, 224, 256, 384, 512) P-521: (SHA-1, 224, 256, 384, 512) P-521: (SHA-1, 224, 256, 384, 512) K-163: (SHA-1, 224, 256, 384, 512) K-233: (SHA-1, 224, 256, 384, 512) K-283: (SHA-1, 224, 256, 384, 512) K-26, 384, 512) K-26, 384, 512 K-271: (SHA-1, 224, 256, 384, 512) B-233: (SHA-1, 224, 256, 384, 512) B-233: (SHA-1, 224, 256, 384, 512) B-283: (SHA-1, 224, 256, 384, 512) B-283: (SHA-1, 224, 256, 384, 512) B-271: (SHA-1, 224, 256, 384, 512) B-571: (SHA-1, 224, 256, 384, 512) D ECC CDH (CVI.) [SP 800-56A] (§5.7.1.2) All NIST Recommended B, K and P curves 65 | | | 512) K-283: (SHA-224, 256, 384, 512) K-409: | | | B-283: (SHA-224, 256, 384, 512) B-409: (SHA-224, 256, 384, 512) D-571: (SHA-224, 256, 384, 512) D-571: (SHA-224, 256, 384, 512) D-100: (SHA-1, 224, 384 | | | (SHA-224, 256, 384, 512) K-571: (SHA-224, | | | 224, 256, 384, 512) B-571: (SHA-224, 256, 384, 512)) SigVer: CURVES(P-192: (SHA-1, 224, 256, 384, 512) P-256: (SHA-1, 224, 256, 384, 512) P-256: (SHA-1, 224, 256, 384, 512) P-384: (SHA-1, 224, 256, 384, 512) K-163: (SHA-1, 224, 256, 384, 512) K-233: (SHA-1, 224, 256, 384, 512) K-283: (SHA-1, 224, 256, 384, 512) K-409: (SHA-1, 224, 256, 384, 512) K-571: (SHA-1, 224, 256, 384, 512) B-233: (SHA-1, 224, 256, 384, 512) B-233: (SHA-1, 224, 256, 384, 512) B-283: (SHA-1, 224, 256, 384, 512) B-283: (SHA-1, 224, 256, 384, 512) B-283: (SHA-1, 224, 256, 384, 512) B-409: (SHA-1, 224, 256, 384, 512) B-571: (SHA-1, 224, 256, 384, 512)) ECC CDH (CVL) [SP 800-56A] (§5.7.1.2) All NIST Recommended B, K and P curves 65 | | | 256, 384, 512) B-233: (SHA-224, 256, 384, 512) | | | 512)) SigVer: CURVES(P-192: (SHA-1, 224, 256, 384, 512) P-224: (SHA-1, 224, 256, 384, 512) P-224: (SHA-1, 224, 256, 384, 512) P-256: (SHA-1, 224, 256, 384, 512) P-384: (SHA-1, 224, 256, 384, 512) P-521: (SHA-1, 224, 256, 384, 512) K-163: (SHA-1, 224, 256, 384, 512) K-233: (SHA-1, 224, 256, 384, 512) K-283: (SHA-1, 224, 256, 384, 512) K-409: (SHA-1, 224, 256, 384, 512) K-571: (SHA-1, 224, 256, 384, 512) B-233: (SHA-1, 224, 256, 384, 512) B-233: (SHA-1, 224, 256, 384, 512) B-283: (SHA-1, 224, 256, 384, 512) B-283: (SHA-1, 224, 256, 384, 512) B-409: (SHA-1, 224, 256, 384, 512) B-571: (SHA-1, 224, 256, 384, 512)) ECC CDH (CVI) [SP 800-56A] (§5.7.1.2) All NIST Recommended B, K and P curves 65 | | | B-283: (SHA-224, 256, 384, 512) B-409: (SHA- | | | SigVer: CURVES(P-192: (SHA-1, 224, 256, 384, 512) P-256: (SHA-1, 224, 256, 384, 512) P-256: (SHA-1, 224, 256, 384, 512) P-384: (SHA-1, 224, 256, 384, 512) P-521: (SHA-1, 224, 256, 384, 512) P-521: (SHA-1, 224, 256, 384, 512) K-233: (SHA-1, 224, 256, 384, 512) K-283: (SHA-1, 224, 256, 384, 512) K-409: (SHA-1, 224, 256, 384, 512) K-571: (SHA-1, 224, 256, 384, 512) B-233: (SHA-1, 224, 256, 384, 512) B-233: (SHA-1, 224, 256, 384, 512) B-283: (SHA-1, 224, 256, 384, 512) B-283: (SHA-1, 224, 256, 384, 512) B-409: (SHA-1, 224, 256, 384, 512) B-571: (SHA-1, 224, 256, 384, 512)) ECC CDH (CVL) [SP 800-56A] (§5.7.1.2) All NIST Recommended B, K and P curves 65 | | | 224, 256, 384, 512) B-571: (SHA-224, 256, 384, | | | 384, 512) P-224: (SHA-1, 224, 256, 384, 512) P- 256: (SHA-1, 224, 256, 384, 512) P-384: (SHA- 1, 224, 256, 384, 512) P-521: (SHA-1, 224, 256, 384, 512) K-163: (SHA-1, 224, 256, 384, 512) K-233: (SHA-1, 224, 256, 384, 512) K-283: (SHA-1, 224, 256, 384, 512) K-409: (SHA-1, 224, 256, 384, 512) K-571: (SHA-1, 224, 256, 384, 512 B-163: (SHA-1, 224, 256, 384, 512) B- 233: (SHA-1, 224, 256, 384, 512) B-283: (SHA- 1, 224, 256, 384, 512) B-409: (SHA-1, 224, 256, 384, 512) B-571: (SHA-1, 224, 256, 384, 512)) ECC CDH (CVL) [SP 800-56A] (§5.7.1.2) All NIST Recommended B, K and P curves 65 | | | 512)) | | | 256: (SHA-1, 224, 256, 384, 512) P-384: (SHA-1, 224, 256, 384, 512) P-521: (SHA-1, 224, 256, 384, 512) K-163: (SHA-1, 224, 256, 384, 512) K-233: (SHA-1, 224, 256, 384, 512) K-283: (SHA-1, 224, 256, 384, 512) K-409: (SHA-1, 224, 256, 384, 512) K-571: (SHA-1, 224, 256, 384, 512) B-233: (SHA-1, 224, 256, 384, 512) B-283: (SHA-1, 224, 256, 384, 512) B-283: (SHA-1, 224, 256, 384, 512) B-283: (SHA-1, 224, 256, 384, 512) B-409: (SHA-1, 224, 256, 384, 512) B-571: (SHA-1, 224, 256, 384, 512) D-571: (SHA-1, 224, 256, 384, 512) All NIST Recommended B, K and P curves 65 | | | SigVer: CURVES(P-192: (SHA-1, 224, 256, | | | 1, 224, 256, 384, 512) P-521: (SHA-1, 224, 256, 384, 512) K-163: (SHA-1, 224, 256, 384, 512) K-233: (SHA-1, 224, 256, 384, 512) K-283: (SHA-1, 224, 256, 384, 512) K-409: (SHA-1, 224, 256, 384, 512) K-571: (SHA-1, 224, 256, 384, 512) B-163: (SHA-1, 224, 256, 384, 512) B-233: (SHA-1, 224, 256, 384, 512) B-283: (SHA-1, 224, 256, 384, 512) B-283: (SHA-1, 224, 256, 384, 512) B-409: (SHA-1, 224, 256, 384, 512) B-571: (SHA-1, 224, 256, 384, 512)) ECC CDH (CVI.) [SP 800-56A] (§5.7.1.2) All NIST Recommended B, K and P curves 65 | | | 384, 512) P-224: (SHA-1, 224, 256, 384, 512) P- | | | 384, 512) K-163: (SHA-1, 224, 256, 384, 512) K-233: (SHA-1, 224, 256, 384, 512) K-283: (SHA-1, 224, 256, 384, 512) K-409: (SHA-1, 224, 256, 384, 512) K-571: (SHA-1, 224, 256, 384, 512) B-163: (SHA-1, 224, 256, 384, 512) B-283: (SHA-1, 224, 256, 384, 512) B-571: (SHA-1, 224, 256, 384, 512) D-571: (SHA-1, 224, 256, 384, 512) All NIST Recommended B, K and P curves [SP 800-56A] (§5.7.1.2) All NIST Recommended B, K and P curves 65 | | | 256: (SHA-1, 224, 256, 384, 512) P-384: (SHA- | | | K-233: (SHA-1, 224, 256, 384, 512) K-283: (SHA-1, 224, 256, 384, 512) K-409: (SHA-1, 224, 256, 384, 512) K-571: (SHA-1, 224, 256, 384, 512) B-163: (SHA-1, 224, 256, 384, 512) B-233: (SHA-1, 224, 256, 384, 512) B-283: (SHA-1, 224, 256, 384, 512) B-283: (SHA-1, 224, 256, 384, 512) B-409: (SHA-1, 224, 256, 384, 512) B-571: (SHA-1, 224, 256, 384, 512)) [SP 800-56A] (§5.7.1.2) All NIST Recommended B, K and P curves 65 | | | 1, 224, 256, 384, 512) P-521: (SHA-1, 224, 256, | | | (SHA-1, 224, 256, 384, 512) K-409: (SHA-1, 224, 256, 384, 512) K-571: (SHA-1, 224, 256, 384, 512) K-571: (SHA-1, 224, 256, 384, 512) B-233: (SHA-1, 224, 256, 384, 512) B-283: (SHA-1, 224, 256, 384, 512) B-409: (SHA-1, 224, 256, 384, 512) B-571: (SHA-1, 224, 256, 384, 512)) ECC CDH (CVL) [SP 800-56A] (§5.7.1.2) All NIST Recommended B, K and P curves 65 | | | 384, 512) K-163: (SHA-1, 224, 256, 384, 512) | | | 224, 256, 384, 512) K-571: (SHA-1, 224, 256, 384, 512) B-163: (SHA-1, 224, 256, 384, 512) B-233: (SHA-1, 224, 256, 384, 512) B-283: (SHA-1, 224, 256, 384, 512) B-409: (SHA-1, 224, 256, 384, 512) B-571: (SHA-1, 224, 256, 384, 512) B-571: (SHA-1, 224, 256, 384, 512) All NIST Recommended B, K and P curves 65 | | | K-233: (SHA-1, 224, 256, 384, 512) K-283: | | | 384, 512 B-163: (SHA-1, 224, 256, 384, 512) B-233: (SHA-1, 224, 256, 384, 512) B-283: (SHA-1, 224, 256, 384, 512) B-409: (SHA-1, 224, 256, 384, 512) B-571: (SHA-1, 224, 256, 384, 512)) ECC CDH (CVL) [SP 800-56A] (§5.7.1.2) All NIST Recommended B, K and P curves 65 | | | (SHA-1, 224, 256, 384, 512) K-409: (SHA-1, | | | 233: (SHA-1, 224, 256, 384, 512) B-283: (SHA-1, 224, 256, 384, 512) B-409: (SHA-1, 224, 256, 384, 512) B-571: (SHA-1, 224, 256, 384, 512) D-571: (SHA-1, 224, 256, 384, 512) Secondary (CVI) [SP 800-56A] (§5.7.1.2) All NIST Recommended B, K and P curves 65 | | | 224, 256, 384, 512) K-571: (SHA-1, 224, 256, | | | 1, 224, 256, 384, 512) B-409: (SHA-1, 224, 256, 384, 512) B-571: (SHA-1, 224, 256, 384, 512)) FCC CDH (CVL) [SP 800-56A] (§5.7.1.2) All NIST Recommended B, K and P curves 65 | | | 384, 512 B-163: (SHA-1, 224, 256, 384, 512) B- | | | 384, 512) B-571: (SHA-1, 224, 256, 384, 512) FCC CDH (CVI.) [SP 800-56A] (§5.7.1.2) All NIST Recommended B, K and P curves 65 | | | 233: (SHA-1, 224, 256, 384, 512) B-283: (SHA- | | | FCC CDH (CVI.) [SP 800-56A] (§5.7.1.2) All NIST Recommended B, K and P curves 65 | | | 1, 224, 256, 384, 512) B-409: (SHA-1, 224, 256, | | | FCCCOH(CVI) 2 | | | 384, 512) B-571: (SHA-1, 224, 256, 384, 512)) | | | except sizes 163 and 192 | ECC CDH (CVI) | [SP 800-56A] (§5.7.1.2) | All NIST Recommended B, K and P curves | 65 | | | ECC CDH (CVL) | | except sizes 163 and 192 | | Table 4a – FIPS Approved Cryptographic Functions The Module supports only NIST recommended curves for use with ECDSA and ECC CDH. Refer to the transition tables that will be available at the CMVP Web site (http://csrc.nist.gov/groups/STM/cmvp/. | Category | Algorithm | Description | |-----------------------------|-----------|---| | Key Agreement | EC DH | Non-compliant (untested) DH scheme using elliptic curve, supporting all NIST Recommended B, K and P curves. Key agreement is a service provided for calling process use, but is not used to establish keys into the Module. | | Key Wrapping,
Unwrapping | RSA | The RSA algorithm may be used by the calling application for wrapping or unwrapping of keys. No claim is made for SP 800-56B compliance, and no CSPs are established into or exported out of the module using these services. | Table 4b – Non-FIPS Approved But Allowed Cryptographic Functions The Module implements the following services which are Non-Approved per the SP 800-131A transition: | Function | Algorithm | Options | Cert
| |---|-------------------------|---|-----------| | Random Number
Generation;
Symmetric key
generation | [ANSI X9.31] RNG | AES 128/192/256 | 1179 | | Random Number
Generation;
Symmetric key
generation | [SP 80090] DRBG | Dual EC DRBG
(note the Dual EC DRBG algorithm shall not be
used in the FIPS Approved mode of operation) | 310 | | Digital Signature and
Asymmetric Key
Generation | [FIPS 186-2] RSA | GenKey9.31, SigGen9.31, SigGenPKCS1.5,
SigGenPSS (1024/1536 with all SHA sizes,
2048/3072/4096 with SHA-1) | 1229 | | | [FIPS 186-2] DSA | PQG Gen, Key Pair Gen, Sig Gen (1024 with all SHA sizes, 2048/3072 with SHA-1) | 745 | | | [FIPS 186-3] DSA | PQG Gen, Key Pair Gen, Sig Gen (1024 with all SHA sizes, 2048/3072 with SHA-1) | 745 | | | [FIPS 186-2] ECDSA | PKG: CURVES(P-192 K-163 B-163)
SIG(gen): CURVES(P-192 P-224 P-256 P-384
P-521 K-163 K-233 K-283 K-409 K-571 B-163
B-233 B-283 B-409 B-571) | 392 | | | [FIPS 186-4] ECDSA | PKG: CURVES(P-192 K-163 B-163) SigGen: CURVES(P-192: (SHA-1, 224, 256, 384, 512) P-224: (SHA-1) P-256: (SHA-1) P-384: (SHA-1) P-521: (SHA-1) K-163: (SHA-1, 224, 256, 384, 512) K-233: (SHA-1) K-283: (SHA-1) K-409: (SHA-1) K-571: (SHA-1) B-163: (SHA-1, 224, 256, 384, 512) B-233: (SHA-1) B-283: (SHA-1) B-409: (SHA-1) B-571: (SHA-1)) | 392 | | ECC CDH (CVL) | [SP 800-56A] (§5.7.1.2) | All NIST Recommended B, K and P curves sizes 163 and 192 | 65 | Table 4c – FIPS Non-Approved Cryptographic Functions X9.31 RNG is NonApproved effective December 31, 2015, per the CMVP Notice "X9.31 RNG transition, December 31, 2015". These Non_Approved algorithms shall not be used when operating in the FIPS Approved mode of operation. The Module supports only a FIPS 140-2 Approved mode. The Module requires an initialization sequence (see IG 9.5): the calling application invokes <code>FIPS_mode_set()</code>², which returns a "1" for success and "0" for failure. If <code>FIPS_mode_set()</code> fails then all cryptographic services fail from then on. The application can test to see if FIPS mode has been successfully performed. ² The function call in the Module is FIPS_module_mode_set() which is typically used by an application via the FIPS mode set() wrapper function. The Module is a cryptographic engine library, which can be used only in conjunction with additional software. Aside from the use of the NIST Recommended elliptic curves as trusted third party domain parameters, all other FIPS 186-3 assurances are outside the scope of the Module, and are the responsibility of the calling process. #### 4.1 Critical Security Parameters and Public Keys All CSPs used by the Module are described in this section. All access to these CSPs by Module services are described in Section 4. The CSP names are generic, corresponding to API parameter data structures. | CSP Name | Description | |-----------------|--| | RSA SGK | RSA (2048 to 16384 bits) signature generation key | | RSA KDK | RSA (2048 to 16384 bits) key wrapping/unwrapping | | DSA SGK | [FIPS 186-3] DSA (2048/3072) signature generation key | | ECDSA SGK | ECDSA (All NIST Recommended B, K, and P curves except 163, 192 curve sizes) signature generation key | | EC DH Private | EC DH (All NIST Recommended B, K, and P curves except 163, 192 curve sizes) private key agreement key. | | AES EDK | AES (128/192/256) encrypt / decrypt key | | AES CMAC | AES (128/192/256) CMAC generate / verify key | | AES GCM | AES (128/192/256) encrypt / decrypt / generate / verify key and IV | | AES XTS | AES (256/512) XTS encrypt / decrypt key | | Triple-DES EDK | Triple-DES (3-Key) encrypt / decrypt key | | Triple-DES CMAC | Triple-DES (3-Key) CMAC generate / verify key | | HMAC Key | Keyed hash key (160/224/256/384/512) | | Hash_DRBG CSPs | V (440/880 bits) and C (440/880 bits), entropy input (length dependent on security strength) | | HMAC_DRBG CSPs | V (160/224/256/384/512 bits) and Key (160/224/256/384/512 bits), entropy input (length dependent on security strength) | | CTR_DRBG CSPs | V (128 bits) and Key (AES 128/192/256), entropy input (length dependent on security strength) | | CO-AD-Digest | Pre-calculated HMAC-SHA-1 ³ digest used for Crypto Officer role authentication | | User-AD-Digest | Pre-calculated HMAC-SHA-1 ⁵ digest used for User role authentication | Table 4.1a – Critical Security Parameters The module does not output intermediate key generation values. The module generates cryptographic keys whose strengths are modified by available entropy. | CSP Name | Description | |----------|--| | RSA SVK | RSA (1024 to 16384 bits) signature verification public key | For HMAC-SHA-1 the required key size must be least 112 bits | RSA KEK | RSA (2048 to 16384 bits without SHA-1) key wrapping/unwrapping | |--------------|--| | DSA SVK | [FIPS 186-3] DSA (1024/2048/3072) signature verification key | | ECDSA SVK | ECDSA (All NIST Recommended B, K and P curves except sizes 163 and 192) signature verification key | | EC DH Public | EC DH (All NIST Recommended B, K and P curves except sizes 163 and 192) public key agreement key. | Table 4.1b – Public Keys #### For all CSPs and Public Keys: **Storage**: RAM, associated to entities by memory location. The Module stores RNG and DRBG state values for the lifetime of the RNG or DRBG instance. The module uses CSPs passed in by the calling application on the stack. The Module does not store any CSP persistently (beyond the lifetime of an API call), with the exception of RNG and DRBG state values used for the Modules' default key generation service. **Generation**: The Module implements SP 800-90 compliant DRBG services for creation of symmetric keys, and for generation of DSA, elliptic curve, and RSA keys as shown in Table 4a. The calling application is responsible for storage of generated keys returned by the module. The AES GCM IV is generated using the SP 800-90A Hash DRBG, per NIST 800-38D section 8.2.2 which requires the minimum IV length of 96 bits. **Entry**: All CSPs enter the Module's logical boundary in plaintext as API parameters, associated by memory location. However, none cross the physical boundary. **Output**: The Module does not output CSPs, other than as explicit results of key generation services. However, none cross the physical boundary. **Destruction**: Zeroization of sensitive data is performed automatically by API function calls for temporarily stored CSPs. In addition, the module provides functions to explicitly destroy CSPs related to random number generation services. The calling application is responsible for parameters passed in and out of the module. Private and secret keys as well as seeds, seed keys, and entropy input are provided to the Module by the calling application, and are destroyed when released by the appropriate API function calls. Keys residing in internally allocated data structures (during the lifetime of an API call) can only be accessed using the Module defined API. The operating system protects memory and process space from unauthorized access. Only the calling application that creates or imports keys can use or export such keys. All API functions are executed by the invoking calling application in a non-overlapping sequence such that no two API functions will execute concurrently. An authorized application as user (Crypto-Officer and User) has access to all key data generated during the operation of the Module. In the event Module power is lost and restored the calling application must ensure that any AES-GCM keys used for encryption or decryption are re-distributed. Module users (the calling applications) shall use entropy sources that meet the security strength required for the random number generation mechanism as shown in [SP 800-90] Table 2 (Hash_DRBG, HMAC_DRBG) and Table 3 (CTR_DRBG). This entropy is supplied by means of callback functions. Those functions must return an error if the minimum entropy strength cannot be met. The Module provides no assurance of the minimum strength of generated keys. ### 5 Roles, Authentication and Services The Module meets all FIPS 140-2 level 1 requirements for Roles and Services, implementing both Crypto-User and Crypto-Officer roles. As allowed by FIPS 140-2, the Module does not support user authentication for those roles. Only one role may be active at a time and the Module does not allow concurrent operators. The User and Crypto Officer roles are implicitly assumed by the entity accessing services implemented by the Module. The Crypto Officer can install and initialize the Module. The Crypto Officer role is implicitly entered when installing the Module or performing system administration functions on the host operating system. - User Role (User): Loading the Module and calling any of the API functions. This role has access to all of the services provided by the Module. - Crypto Officer Role (CO): Installation of the Module. This role is assumed implicitly when the system administrator installs the Module. All services implemented by the Module are listed below, along with a description of service CSP access. If the module is not initialized as per Section 4 of the Security Policy, non-conformant versions of the services in Table 5 are made available to the calling application. | Service | Role | Description | |--------------------------------|----------|--| | Initialize | User, CO | Module initialization. Does not access CSPs. | | Self-test | User, CO | Perform self tests (FIPS_selftest). Does not access CSPs. | | Show status | User, CO | Functions that provide module status information: • Version (as unsigned long or const char *) • FIPS Mode (Boolean) Does not access CSPs. | | Zeroize | User, CO | Functions that destroy CSPs: • fips_rand_prng_reset: destroys RNG CSPs. • fips_drbg_uninstantiate: for a given DRBG context, overwrites DRBG CSPs (Hash_DRBG CSPs, HMAC_DRBG CSPs, CTR_DRBG CSPs) All other services automatically overwrite CSPs stored in allocated memory. Stack cleanup is the responsibility of the calling application. | | Random
number
generation | User, CO | Used for random number and symmetric key generation. Seed or reseed an RNG or DRBG instance Determine security strength of an RNG or DRBG instance Obtain random data Uses and updates RNG CSPs, Hash_DRBG CSPs, HMAC_DRBG CSPs, CTR_DRBG CSPs. | | Asymmetric | User, CO | Used to generate DSA, ECDSA and RSA keys: | | Service | Role | Description | |----------------------------|----------|--| | key generation | | RSA SGK, RSA SVK; DSA SGK, DSA SVK; ECDSA SGK, ECDSA SVK There is one supported entropy strength for each mechanism and algorithm type, the maximum specified in SP800-90 | | Symmetric encrypt/decrypt | User, CO | Used to encrypt or decrypt data. Executes using AES EDK, Triple-DES EDK (passed in by the calling process). | | Symmetric digest | User, CO | Used to generate or verify data integrity with CMAC. Executes using AES CMAC, Triple-DES, CMAC (passed in by the calling process). | | Message digest | User, CO | Used to generate a SHA-1 or SHA-2 message digest. Does not access CSPs. | | Keyed Hash | User, CO | Used to generate or verify data integrity with HMAC. Executes using HMAC Key (passed in by the calling process). | | Key transport ⁴ | User, CO | Used to encrypt or decrypt a key value on behalf of the calling process (does not establish keys into the module). Executes using RSA KDK, RSA KEK (passed in by the calling process). | | Key agreement | User, CO | Used to perform key agreement primitives on behalf of the calling process (does not establish keys into the module). Executes using EC DH Private, EC DH Public (passed in by the calling process). | | Digital signature | User, CO | Used to generate or verify RSA, DSA or ECDSA digital signatures. Executes using RSA SGK, RSA SVK; DSA SGK, DSA SVK; ECDSA SGK, ECDSA SVK (passed in by the calling process). | | Utility | User, CO | Miscellaneous helper functions. Does not access CSPs. | Table 5 - Services and CSP Access Services that are not FIPS Approved using key sizes and CSPs specified in Tables 4a, 4b, 4.1a, 4.1b are not allowed for use in FIPS mode. ^{4 &}quot;Key transport" can refer to a) moving keys in and out of the module or b) the use of keys by an external application. The latter definition is the one that applies to this Module. #### 6 Self-test The Module performs the self-tests listed below on invocation of Initialize or Self-test. | Algorithm | Type | Test Attributes | |--------------------|------|---| | Software integrity | KAT | HMAC-SHA1 | | HMAC | KAT | One KAT per SHA1, SHA224, SHA256, SHA384 and SHA512
Per IG 9.1, this testing covers SHA POST requirements. | | AES | KAT | Separate encrypt and decrypt, ECB mode, 128 bit key length | | AES CCM | KAT | Separate encrypt and decrypt, 192 key length | | AES GCM | KAT | Separate encrypt and decrypt, 256 key length | | XTS-AES | KAT | 128, 256 bit key sizes to support either the 256-bit key size (for XTS-AES-128) or the 512-bit key size (for XTS-AES-256) | | AES CMAC | KAT | Sign and verify CBC mode, 128, 192, 256 key lengths | | Triple-DES | KAT | Separate encrypt and decrypt, ECB mode, 3-Key | | Triple-DES CMAC | KAT | CMAC generate and verify, CBC mode, 3-Key | | RSA | KAT | Sign using 2048 bit key, SHA-256, PKCS#1 | | RSA | KAT | Verify using 2048 bit key, SHA-256, PKCS#1 | | DSA | PCT | Sign and verify using 2048 bit key, SHA-384 | | DRBG | KAT | CTR_DRBG: AES, 256 bit with and without derivation function HASH_DRBG: SHA256 HMAC_DRBG: SHA256 | | ECDSA | PCT | Keygen, sign, verify using P-224, K-233 and SHA512. | | ECC CDH | KAT | Shared secret calculation per SP 800-56A §5.7.1.2, IG 9.6 | Table 6a - Power On Self Tests (KAT = Known answer test; PCT = Pairwise consistency test) The FIPS_mode_set() ⁵ function performs all power-up self-tests listed above with no operator intervention required, returning a "1" if all power-up self-tests succeed, and a "0" otherwise. If any component of the power-up self-test fails an internal flag is set to prevent subsequent invocation of any cryptographic function calls. The module will only enter the FIPS Approved mode if the module is reloaded and the call to FIPS mode_set() ⁵ succeeds. The power-up self-tests may also be performed on-demand by calling FIPS_selftest(), which returns a "1" for success and "0" for failure. Interpretation of this return code is the responsibility of the calling application. The Module also implements the following conditional and critical function tests: | Algorithm | Test | |-----------|---| | DRBG | Critical function test as required by [SP800-90] Section 11 | ⁵ FIPS mode set() calls Module function FIPS module mode set() | Algorithm | Test | |----------------|--| | DRBG | FIPS 140-2 continuous test for stuck fault | | DRBG | KAT for Dual_EC_DRBG | | DSA | Pairwise consistency test on each generation of a key pair | | ECDSA | Pairwise consistency test on each generation of a key pair | | RSA | Pairwise consistency test on each generation of a key pair | | ANSI X9.31 RNG | Continuous test for stuck fault | | ANSI X9.31 RNG | KAT for 128, 192, 256 bit AES keys | Table 6b - Conditional and Critical Function Tests In the event of a DRBG self-test failure the calling application must uninstantiate and reinstantiate the DRBG per the requirements of [SP 800-90]; this is not something the Module can do itself. The uninstantiation of the DRBG by the calling application zeroizes the internal state of the DRBG to ensure it is not accessible prior to the reinstatiation of the DRBG. Pairwise consistency tests are performed for both possible modes of use, e.g. Sign/Verify and Encrypt/Decrypt. ## **7** Operational Environment The tested operating systems segregate user processes into separate process spaces. Each process space is logically separated from all other processes by the operating system software and hardware. The Module functions entirely within the process space of the calling application, and implicitly satisfies the FIPS 140-2 requirement for a single user mode of operation. The tested operating systems are listed in Table 2: Granite OS 2.0 Interceptor OS 4.5 **RiOS 8.0** **RiOS 8.6** RiOS 9.2 Riverbed License Manager 1.0 SteelCentral AppResponse 11.0 SteelCentral Controller for SteelHead Mobile 5.0 SteelFusion 4.3 Steelhead Mobile Controller 4.6 Stingray OS version 4.0 Whitewater OS 3.0 ## 8 Mitigation of other attacks The module is not designed to mitigate against attacks which are outside of the scope of FIPS 140-2.